A Mirror的博客

不许说话不许笑 [手动滑稽]

0%

洛谷P1076全排列问题题解

题目

题目描述

输出自然数 11 到 nn 所有不重复的排列,即 nn 的全排列,要求所产生的任一数字序列中不允许出现重复的数字。

输入格式
一个整数 n。

输出格式

由 1~n 组成的所有不重复的数字序列,每行一个序列。
每个数字保留 5 个场宽。

输入输出样例

输入
3
输出
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

思路分析

诈一看,这是一道全排列问题 。但我们可以用深搜的方法解决。


以下是百度百科上关于全排列的定义(原文链接点这里):

从n个不同元素中任取m(m<=n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n所有的排列情况叫全排列。

现在观察样例,发现查找的顺序因该是由小到大。

完整AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include<iostream>
using namespace std;
int vst[10],n,result[20]; //vst是标记是否使用过该数字,n是输入,result存储结果
void print(){ //单独的输出函数
for(int i=1;i<=n;i++){ //输出n个数的全排列结果
cout<<" "<<result[i];
}
cout<<endl;
}
void dfs(int num){ //【此注释一定要看】num代表的是现在正在排列第n位数
if(num==n+1){ //为什么要n+1?在第n次的时候,还在排列最后一位数。只有n+1时,才是排列结束的结果
print();
return;
}
for(int i=1;i<=n;i++){ //分别尝试范围内的数是否满足条件
if(vst[i]==0){ //需判断的条件:数字没有被使用过
result[num]=i; //存储排列结果
vst[i]=1; //标记此数字已使用
dfs(num+1); //dfs深搜
vst[i]=0; //标记此数字未使用
}
}
}
int main(){ //main没有必要解释。。。
cin>>n;
dfs(1);
return 0;
}

推荐阅读

1.洛谷P2108学英语题解,点击查看
2.洛谷P1076寻宝题解,点击查看

拓展

如果把样例改成这样呢?

输入
3
输出
3 2 1
3 1 2
2 3 1
2 1 3
1 3 2
1 2 3

这里只写出最核心部分:

1
2
3
4
5
6
7
8
9
+for(int i=1;i<=n;i++){
-for(int i=n;i>=1;i--){
if(vst[i]==0){
result[num]=i;
vst[i]=1;
dfs(num+1);
vst[i]=0;
}
}
感谢您的支持!